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APPENDIX F 

SPATIAL POINT PATTERN ANALYSIS

 
 

 

1. INTRODUCTION  
 

In the 2002 published article, the authors claim to introduce an extension to Ripley-K analysis of 

a spatial point pattern (SPP)  which does not require special consideration of edge effects.  The 

intent of the analyses was to identify distances where the incidences of citrus canker were 

spatially dependent.   This method depends of the  DNC method, step 2, the parsing of infected 

trees into time periods, as discussed in Appendix A.    

The review concluded the method was not an extension of the Ripley-K method, but rather 

consistent with inter-point distance (IPD) analysis as discussed in Appendix D.  This appendix is 

further theoretical  extension and application  of the IPD analysis as reviewed in Appendix D.    

The application spatial point patterns to plant disease epidemiology is discussed in Madden, al., 

2006 and Campbell, 1990.   An  important difference between the applications in these 

references and in this review- all applications in these textbooks concern commercial crops 

grown on farms or orchards  and the Florida field study was exclusively conducted in urban 
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residential areas of Florida.  As will be discussed, the underlying arrangement of host plants can 

not be overlooked in a spatial point pattern analysis.  

A short summary on spatial point pattern (SPP) is presented here in terms of concepts,  

terminology and sources of information.    The focus is on general concepts rather than 

equations and rigorous mathematics, but some mathematics is included.   Also,  the scope was 

limited to methods given in the Gottwald, 2002.  For example, sampling methodologies are not 

reviewed here because in the Florida field study, all sites were repeatedly surveyed.    

Ideally, the appendices should be read in order following Chapter 5.  The most relevant 

Appendices  for this discussion would be Appendices A, B and D.  

TERMINOLOGY USED IN THIS APPENDIX 
 

The collection of points in a defined area is called a “pattern” which is synonymous with 

arrangement.    The arrangement of points may be regular, random or clustered.   Example of 

regular patterns would be the arrangement of trees in an orchard.  Since the Florida field study 

did not include orchards,  spatial methods for regular patterns need not be reviewed here.   

Random points may be intuitively thought of as evenly scattered, or not displaying any 

aggregation.   A clustered set of points displays areas of higher concentration of points 

(intensity) in certain locations and lower in others.   

Random and cluster points patterns can be generated by pseudo random number generation 

synonymous Monte Carlo simulation or Monte Carlo modeling.  An excellent summary is 

available from Wikipedia as cited in the references.  To keep our terminology unambiguous, the 

word “distribution” has  purposely been avoided in relation to the arrangement of points, and 

used only in relationship of a probability distribution.  

 A cumulative distribution function (cdf) or F(x) provides the cumulative probability of values 

equal to or less than x. A cdf  can be calculated using quantiles, which assigns probabilities by 

ranking the data from lowest to highest, and assigning a probability to each data value.   These 

cdf are often referred to as empirical cdf’s.  Alternatively, one can assume a random variable is 

represented by a certain theoretical cdf,  such as a uniform distribution,  normal (Gaussian), 

hypergeometric,  Poisson and binomial; the latter three distributions are used with discrete 

random variables.  

COMPLETE SPATIAL RANDOMNESS  
 

Campbell, 1990  description or properties of a random pattern includes: 

1. Every point  on a surface has an equal probability of being occupied.  

2. Providing the location of any one individual on a surface provides no information as to 

the location of other individuals.  
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Cressie provides an equivalent interpretation of a random pattern (page 586), which follows 

after being stated mathematically,  

 Intuitively, this says [referring to equations involving  probabilities] that events are 

equally likely to occur anywhere within A and that events do not interact with each other.  

Complete spatial randomness (CSR)  is a conceptual standard by which other patterns can be 

judged.   

Random patterns can be defined  mathematically.  There are also  interpretations and example 

which extend the conceptual understanding.  According to Diggle, 2003, a hypothesis for a   

complete spatial randomness for a spatial point pattern  assets that:  

(i) the number of events in any planar region with area |A| follows a Poisson distribution 

with mean 𝜆|𝐴|   

(ii) given n events 𝑥𝑖 in a region A, the 𝑥𝑖 are an independent random sample from the 

uniform distribution on A.  

Random pattern of points are   generated on the computer by calling random functions, which 

produce equal size vectors of X and Y random coordinates using random number generators.  

Diggle explain that intuitive ideas of what constitutes a ‘random pattern’ can be misleading.  

Using computer generated random patterns,  the points in one realization may appear to be 

aggregated, but the pattern is in fact, random. A realization of a  computer generated random 

pattern is in Figure 1. 

.   
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Figure 1:  Computer generated complete spatial randomness pattern 

 

 

Matlab Code: 

clear; 
x= rand(1000,1) 
y = rand(1000,1) 
plot(x,y,'.') 
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AGGREGATION IN POINT PATTERNS 
 

A computer generated aggregate pattern is shown below, showing a single clustering of points.  

There can be multiple clusters, each one showing a central concentration.   

 

Figure 2:  Clustered Pattern 

 

 

Visually, it is very easy to distinguish between this pattern from the random pattern shown in 

Figure 1.  The clustering patterns can become much more complex.  If several clusters are 

present, of varying degrees of aggregation,  then attempting to interpret the pattern likely 

requires statistical analyses.   Further, if the observation window is limited to only a part of the 

pattern,  particularly if it is on the fringes of the cluster, the pattern may appear to be random. 

Finally,  a pattern which originally was clustered may be thinned over time, so the appearance is 

more consistent with a random pattern.    
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RIPLEY-K ANALYSIS 
 

It is stated at the onset that this discussion will be limited to the analyses within the paper.   

Ripley-K analyses is certainly discussed in the paper, but it is our contention that Ripley-K or 

some modified version of Ripley-K analysis was never done. But to explain this, it is necessary 

to describe the Ripley-K method.   It is our contention that the method used in the spatial point 

pattern analysis is properly termed “inter-point analysis” or “inter-event analysis”, which is 

presented in the next section 

Consider a pattern is sampled by a circle with an origin x,y,  radius d, and area A (= 𝜋𝑑2).  The   

the number of points within the circle can be determined and intensity calculated.   Now, we can 

randomly select origins, and continue to count the points within the circle. The same can be 

repeated with different radii.  The mean counts at distances can be compared with what should 

be the result had the points been an evenly scattering (CSR) pattern sampled as the number of 

points tends to infinity.  Using Monte-Carlo methods, confidence limits can be determined for the 

CSR pattern with limited points.   

 

Figure 4:   Ripley-K Sampling 

 

For our pattern,  the overall intensity 𝜆 is 1000 since we have 1000 points distributed over a unit 

area.   Let X represent the number of points within each circle.   The  number of points within 

circles completely within the is circle   Let X represent the number of points within each circle.   



Appendix F- Spatial Point Pattern Analysis -Additional Application Page 7 
 

The probability P{X = x} where x may be any value from 0 to 1000 points, as in our example,  

can  be determined with the Poisson distribution, with mean  𝜆 A.   

This will work well unless our circular sample extends over a boundary resulting in  an 

incomplete sample.  There are known “fixes” to this problem, one is to adjust upwards the 

number of counted points in our sample.  The second is to employ “guard rails” so the sampler 

does not extend beyond the boundaries of our points.  The  article by Ward and Ferrandino (5) 

proposed a new  upward adjustment for samples which were not entirely within the study area. 

INTER-POINT DISTANCE (IPD) ANALYSIS 
 

In inter-point distance analysis,  every point is connected to every other point excluding all 

duplicate distances.  The generated statistics and statistical analysis will be referred to as IP 

statistics and  IPD statistical analysis.  This is synonymous with inter event distances, as 

referred to by Diggle, 2003.  In Appendix C, the method to generate distances was referred to 

as the inter-tree distance analysis, in review of Figure 3 of the Gottwald, 2002.    

Inter-point distances are shown below.  Given  n points,  the number of calculated distances is 

(n)(n-1)/2.  An empirical  cumulative distribution can be determined for random variable, X, 

representing the distance between points.   

 

Figure 4: Inter-point distance analyses example with 4 points and 6 distances 

 

The random variable, X,  is the distance between randomly selected points.   The cumulative 

distribution function is: 

𝐹(𝑑)  =  𝑃{𝑋 ≤ 𝑑}  =  𝑝    or the probability of an event is less than p.  

The event is defined as a distance as calculated from two randomly selected point is  less or 

equal to d.    
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For square study area, the cumulative distribution function (cdf)  can be calculated using an 

Bartlett’s equation (Diggle, 2003). 

𝐹(𝑥)  = 𝜋𝑥2 − 8𝑥3/3 + 𝑥4/2 
 

0 ≤ 𝑥 ≤ 1 

 1/3 − 2𝑥2 − 𝑥4/2 + 4(𝑥4 − 1)1/2(2𝑥2 + 1)/3)
+  2𝑥2𝑠𝑖𝑛−1(2𝑥−2 − 1) 

1 < 𝑥 ≤ √2 

 

An empirical cdf for a CSR  pattern for any geometry can be generated using simulation.    For 

hypothesis testing  with limited data,  appropriate CSR pattern envelope, typically 5 and 95% 

limits of the  cdf  can be determined using simulation as discussed in Diggle, 2003 on pages 14- 

17.    ..     

The primary field study article (Gottwald, 2002) does not specifically identify IPD method, but it 

is easily recognizable in the methodology section of the paper.   The excerpt in the paper, as 

presented below, indicates that “direct enumeration of tree pairs”  (entire sentence highlighted)      

An alternative method for calculating the K-function has recently been presented that directly 

incorporates the edge effect into CSR model predictions, yielding more accurate estimates of the 

variance (32). In what follows, this approach is extended to a sample space consisting of an 

irregular lattice of points (trees). For this case, the prediction of infected point pairs based on CSR is 

obtained by direct enumeration of tree pairs. Thus, no edge correction is necessary and 

expectation values and confidence limits can be obtained by direct statistical inference. 

  



Appendix F- Spatial Point Pattern Analysis -Additional Application Page 9 
 

2. SELECTED  EXCERPTS FROM THE PUBLISHED ARTICLE 
 

Selected excepts from Gottwald, T.R., X. Sun, Riley, T. Graham, J.H.,  Ferrandino, F. and 

Taylor, E., 2002, Geo-Referenced Spatiotemporal Analysis of the Urban Citrus Canker 

Epidemic in Florida, Phytopathology, Vol 92, No. 4.   

Every effort has been taken to transcribe the excerpted passages related to spatial point pattern 

exactly as published.  Figures and table numbers used in this section are based on the 

published article.   These selected sections may exclude important details, and it is 

recommended that the full article be reviewed.    The full article may be downloaded free of 

charge from a number of websites, www.citruscankerdocs.com.  

 --- Page 362, left hand side, begins middle of third paragraph, beginning with the third 

paragraph,  beginning with the sentence  “Semivariance analysis... .”  

More robust approaches to measures of spatial randomness of discrete (i.e., binary) spatial point pattern 

data are the stochastic modeling approaches proposed by Ripley (5,26) and have found application 

predominantly in ecological studies. For Ripley’s methods, first order properties of a spatial point 

process describe how the mean number of points per unit area (intensity) varies through space. Point-

to-point nearest neighbor and origin-to-point nearest neighbor statistics provide objective methods to 

examine small-scale interactions between points (first order intensity) by calculation of their respective 

empirical distribution functions (EDF). If the respective point-to-point and origin-to-point nearest neighbor 

EDFs differ significantly, then a departure from randomness is assumed. The second-order properties 

(second order intensity) of spatial point processes describe the interaction or spatial dependence between 

points through space and can be described by Ripley’s K-function. In this case, if y is the mean number 

of diseased plans per unit area (a density), then yK(d) is the number of diseased plants within the 

distance (d) of an arbitrary (or randomly selected) diseased plant. 

 

By plotting estimates of  𝐾  as a function of distance, and comparing it to a plot of estimates of 

complete spatial randomness (CSR), the range of spatial dependency (RSD), i.e., the range of distance 

over which there is a departure from CSR, and the maximum spatial dependency (MSD), i.e., the 

distance at which the maximum departure from randomness occurs, can be estimated. Ripley’s original 

method ignores the finite size of the plot in calculating the CSR prediction and uses a weighting that 

inflates the pairs counts to compensate for the reduced numbers of pairs near the plot boundaries, 

i.e., edge effects. At low incidence, this weighting tends to overestimate the number of pairs at the 

boundaries of the plot. An alternative method for calculating the K-function has recently been 

presented that directly incorporates the edge effect into CSR model predictions, yielding more accurate 

estimates of the variance (32). In what follows, this approach is extended to a sample space consisting of 

an irregular lattice of points (trees). For this case, the prediction of infected point pairs based on CSR is 

obtained by direct enumeration of tree pairs. Thus, no edge correction is necessary and expectation 

values and confidence limits can be obtained by direct statistical inference. 

 

--- Page 364, left hand side : 

 

Evaluation of the spatial point pattern by modified Ripley’s K-function methods. Evaluation of 

the spatial point pattern (SPP) of citrus canker from a regional perspective in Dade and Broward counties 

entailed an examination of differences between the trees in general within the respective study sites. 
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This was accomplished by the comparison of two cumulative distribution functions (cdfs): one 

representing the fraction of infected tree pairs less than or exactly a distance (d) apart [𝑐𝑑𝑓𝑡(𝑑)] and the 

second distribution for the total population of trees [𝑐𝑑𝑓𝑇(𝑑)]. Assuming that out of a total of N trees in the 

study site, I are citrus canker- infected. These cdfs can be expressed as 

---  

where m = 1 for tree pairs that are ≤di apart and m = 0 otherwise, and likewise, s = 1 for infected tree 

pairs that are ≤di apart and s = 0 otherwise. The CSR assumption translates to the expected 

equivalence of equations 1 and 2 so a constant fraction {I(I – 1)/ [N(N – 1)] } of tree pairs are infected, 

irrespective of distance (d). The factor of ‘2’ in the numerators of equations 1 and 2 accounts for the fact 

that the pairs are unordered (i.e., k > j in second summations for equations 1 and 2). For a particular 

distance (d), the probability of selecting infected pairs in a sample of N(N – 1)/2 𝑐𝑑𝑓𝑇(𝑑) tree pairs 

chosen randomly from a population of size N(N – 1)/2 of which I(I – 1)/2 are infected is given by the 

hyper- geometric distribution: 

 
An alternative method for calculating the K-function has recently been presented that directly 

incorporates the edge effect into CSR model predictions, yielding more accurate estimates of the variance 

(32). In what follows, this approach is extended to a sample space consisting of an irregular lattice of 

points (trees). For this case, the prediction of infected point pairs based on CSR is obtained by direct 

enumeration of tree pairs. Thus, no edge correction is necessary and expectation values and confidence 

limits can be obtained by direct statistical inference. 

For the range of incidence and sample size examined in this study, the hypergeometric function is well 

approximated by a normal distribution with the same mean and variance. This fact can be used to 

estimate confidence intervals. 

The citrus canker-infected trees are tested for spatial dependency by applying the one-sample single-

tailed Kolmogorov-Smirnov test to the maximum distance {D = 𝐷 = 𝑚𝑎𝑥[𝑐𝑑𝑓𝑡(𝑑) − 𝑐𝑑𝑓𝑇(𝑑)]} between 
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the above two cumulative distributions (3). The above describes a new analytical approach to SPP 

analysis that is an outgrowth of the modification to Ripley’s K-function presented by Ward and Ferrandino 

(32). Note this analysis is equivalent to Ripley’s K-function in the limit of an infinite number of trees 

uniformly covering the study site. 

The above analysis was accomplished through the use of a VBA written by F. Ferrandino and 

compares the infected SPP to the total SPP. This generalized Ripley’s K-function was used to 

examine SPP of the five research sites regardless of time period and subsequently to examine the 

cumulative disease incidence for each site by time period T1 through T25. Via this method, analytical 

results were obtained for the range of spatial dependency (RSD), i.e., the distance at which the estimated 

and observed cdfs in equation 1 intersect; the effective range of spatial dependency (RSDeff), the distance 

over which the cdfs in equation 1 were significantly (P < 0.05) different; and the distance at which maximal 

spatial difference (MSD) occurred, and the cdf (K-value) associated with the maximum spatial difference 

(Maxdiff). 

Page 370. second paragraph, left hand side 

Ripley’s K-function. Modified Ripley’s K analysis of the citrus canker SPP for each of the study sites was 

performed encompassing the entire study period. That is, the SPP evident in each time period, T1 to T25, 

was calculated and examined in order to better understand and explain the change among successive 

SPP associated with the spread of ACC in the study sites. The SPP examined in each time period 

consisted of the new infections occurring in that time period, as well as all diseased citrus trees from 

previous time periods. The dynamics of the range of spatial dependency (RSD = the distance at which the 

estimated and observed modified Ripley’s K cdf values intersect), the effective range of spatial 

dependency (RSDeff) at α = 0.05, and the maximum departure from randomness (Maxdiff) and its 

associated distance (MSD) were calculated for each 30-day period (Figs. 4 and 5A to D). Aggregation of 

the SPP, exhibited by a significant difference between the cumulative distribution functions in equations 1 

and 2 above, was exhibited in all of the respective sites through the entire range of time. By applying this 

method across the 25 temporal periods of the study, the regional spatiotemporal relationships of ACC 

were examined for each study site and among study sites. In general, aggregation increased 

concomitantly with disease incidence. This aggregation was expressed by the RSDeff that increased 

across all study sites and approached a maximum during the first few temporal periods. The RSDeff 

associated with sites D2, D3, and B2 increased through time until it reached a maximum plateau, whereas 

for D1 and B1, the RSDeff occurred during T3 and T7, respectively, and decreased over the next several 

temporal periods before reaching a lower plateau. The maximum RSDeff for sites D1, D2, D3, B1A, and B1B 

was 1.53, 2.13, 0.85, 3.78, and 1.61 km and corresponded to 30-day periods T3, T2, T18, T6, and T9, 

respectively. The greatest departures from randomness, Maxdiff, for D1, D2, D3, B1A, and B1B were K- 

values of 0.45, 0.69, 1.00, 0.73, and 0.71 and corresponded to distances of 1.03, 0.69, 0.01, 0.95, and 0.31 

km, respectively. Examination of the SPP maps for each plot revealed that for D1, D2, and D3, the 

distribution of citrus canker-infected trees over the extents of each plot was first seen at T3, T2, and T17, 

respectively, and related to RSDeff spatiotemporal distance relationships of 1.5, 2.2, and 1.6 km, 

respectively. 
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Fig. 4. Example of the calculation of the modified Ripley’s K-function for the citrus canker 

spatial point pattern over distance for site D1, for a single time period T4. Dotted line 

represents the estimated K with surrounding á = 0.05 confidence limits (dashed lines). Solid 

vertical line crosses the x = distance axes at the point relative to the intersection of estimated 

and observed K-value, and represents the range of spatial dependency (RSD) in kilometers. 

Dotted vertical line crosses the x = distance axes at the point relative to the intersection of the 

observed K-value where it enters into the upper confidence limit, and represents the effective 

range of spatial dependency (RSDeff) in kilometers. Open circle and dashed vertical line show the 

maximum departure from randomness (Maxdiff) and the associated maximum spatial difference 

(MSD) in kilometers. Calculation are described in equations 1 to 5. 

 

Note:  Figures 5A-D as presented on page 373 of the published article,  are a part of the spatial 

point pattern analysis.  These figures  were not considered important for this review.  The reader 

can refer to the published article on the website for these figures.     



Appendix F- Spatial Point Pattern Analysis -Additional Application Page 13 
 

3. REVIEW OF THE   SPATIAL POINT PATTERN ANALYSIS 
 

The above excerpts do not include  discussion of  the “range of spatial dependency”  (RSTD) as 

given on page 365  and 370.   This analysis is reviewed in Appendix G, Semi-Variance Analysis.   

Equation 1, on page 364 is an empirical cumulative distribution related to the inter-tree 

distances in a particular site.  The probability of the distance  between  two randomly selected 

trees being al distance “d”  or less apart is equal to   𝑐𝑑𝑓𝑇(𝑑).  As a statement of probability, 

𝑃{𝐷 ≤ 𝑑} =  𝑐𝑑𝑓𝑇(𝑑),  where D is the random variable representing inter-point distances.  

The empirical distribution for the infected trees,  𝑐𝑑𝑓𝑡(𝑑),  is calculated in a similar manner as 

given in equation 2.  Both equations 1 and 2 are correct means of estimating these probabilities, 

consistent with quantile methods.  As stated in the article, the number of inter-point distances for 

infected trees is (𝐼 − 1)/2 and for  the total population is 𝑁(𝑁 − 1)/2.    The infected trees are a 

subset of the total population (full set),  with members equal I and N, respectively.    

 The spatial point analysis reviews two analyses: 

 A hypothesis test as whether the pattern of all citrus trees is significantly different from 

the pattern of diseased trees  

 A determination of spatial dependency by a new approach identified as “modified Ripley-

K” method.   

It is noted after considerable literature review,  we could find no application of either the DNC 

parsing method, or the modified Ripley-K method as presented in the published article.    The 

authors do not offer any previous applications.  

As discussed previously,  these equations are completely consistent with inter-point distance 

analysis, and not the Ripley-K method.  For this reason,  the  statistics and approach  will be 

denoted as “IPD” statistics or IPD statistical analysis”, respectfully.  

Prior to defining the empirical distributions (equations 1 and 2), it is stated, “Assuming out of a 

total of N trees in the study site, I are citrus canker infected.”   This seems a strange statement, 

as the number of trees infected with citrus canker would be known based on survey data.   

HYPOTHESIS TEST 
 

The discussion beginning on page 364, beginning with “The CSR assumption ...” seems out of 

place or details missing, as no “CSR assumption” has been discussed prior to  this statement.  

The paragraph ends with the statement, “This fact can be used to estimate confidence interval”, 

yet is far from clear what “this fact” refers to.  These statements and analyses in this  paragraph 

is discussed in detailed in Appendix F1.  It is considered a theoretical discussion.  

The next sentence provides the details for a Kolmogorov-Smirnov test,  a well known means of 

comparing two distributions.  
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The citrus canker-infected trees are tested for spatial dependency by applying the one-sample 

single-tailed Kolmogorov-Smirnov test to the maximum distance {D = 𝑚𝑎𝑥[𝑐𝑑𝑓𝑡(𝑑)  −

𝑐𝑑𝑓𝑇(𝑑)]} between the above two cumulative distributions (3).  

Following this statement,  no test  results are given.  It is very odd. The authors have presented 

the means by which the empirical distributions can be calculated, and proposed the K-S tests, 

then fail to present any results.        

It should be recognized that the citrus trees (healthy and infected)  are likely to be  aggregated.  

The aggregation of citrus trees is an intuitive conclusion based on where citrus trees are 

typically located in the backyards and these backyards are typically adjoining.  Citrus trees are 

rarely planted  in front yards, school yards and public parks.  Large non-citrus areas exist in the 

study sites including parking lots, lakes,  canals, industrial parks and commercial centers.   

SPATIAL DEPENDENCY USING THE INTER-POINT DISTANCE (IPD) STATISTICS 
 

The figure below is presented on page 372.  We will refer to the solid line as the “observed” 

cumulative distribution, while the dotted line is the “expected” cumulative distribution with 

confidence intervals.  

Figure 5: Spatial Statistical  Analysis results 

 

 

The notation with Figure 4 is provided below: 
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Fig. 4. Example of the calculation of the modified Ripley’s K-function for the citrus canker 

spatial point pattern over distance for site D1, for a single time period T4. Dotted line 

represents the estimated K with surrounding α = 0.05 confidence limits (dashed lines). Solid 

vertical line crosses the x = distance axes at the point relative to the intersection of estimated 

and observed K-value, and represents the range of spatial dependency (RSD) in kilometers. 

Dotted vertical line crosses the x = distance axes at the point relative to the intersection of the 

observed K-value where it enters into the upper confidence limit, and represents the effective 

range of spatial dependency (RSDeff) in kilometers. Open circle and dashed vertical line show the 

maximum departure from randomness (Maxdiff) and the associated maximum spatial difference 

(MSD) in kilometers. Calculation are described in equations 1 to 5. 

The functions K^obs(Di ) and Kexp  are not  specifically defined in equations 1 to 5.   From the 

overall discussion, it is concluded  that  K^obs(d) is the inter-tree point distance distribution for 

canker infected trees as calculated by Equation  2.    A calculation example is given on page 8 

using 4 points.     

The introductory statements on page 362, would indicate the expected curve is the 

cumulative distribution of a theoretical CSR pattern.   

By plotting estimates of  𝐾 as a function of distance, and comparing it to a plot of estimates of 

complete spatial randomness (CSR), the range of spatial dependency (RSD), i.e., the range of 

distance over which there is a departure from CSR, and the maximum spatial dependency 

(MSD), i.e., the distance at which the maximum departure from randomness occurs, can be 

estimated.  

But, there is not one sentence within the published article which reveals how the theoretical 

CSR distribution was generated.  For a square or circular area, it may be calculated 

numerically, as given in Diggle (see references at the end of this appendix).   Most certainly, 

the curve was generated using Monte-Carlo simulation.  

Why would the authors fail to mention this?  Monte-Carlo simulation has been used for over 40 

years, and there would be no question as to the validity of a distribution from this pattern. The 

CSR pattern have to be consistent with the boundaries of the site, which seem difficult to pin 

down (see Appendix A).    

However, the many realizations of the CSR pattern itself, would be absurd if any one 

realization was overlain on a street map.  Points would placed randomly, everywhere, on top of 

houses, in lakes, canals, roads, etc. It follows that the departure from a pattern that could not 

exist, is not a meaningful analyses.  There is no evidence within the published paper that any 

spatial analysis on the healthy trees was analyzed.  
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FURTHER INVESTIGATION OF THE CSR CURVE IN FIGURE 4 
 

It is believed  the expected curve in Figure 4 was  generated by simulation using the Matlab 

software.  To test this theory, a CSR pattern was generated using a 3.22 x 3.22 km (10.4 km2, 

equivalent to 4 square miles, per the area given in the 2002 article.  The simulation was run with 

300 points.  The  cumulative distribution from simulation  was a poor match to  Figure 4.   The 

model was run a second time with the dimensions 3.22 x 1.61 km (2 x 1 mi rectangle) and 

again, the distribution did not match.   

After some experimentation,  a good  match was made with  3.0 x 1.2 km as shown in below in 

Figure 5.  As stated in the caption in the published article, this distribution is for the Site D1.  It is 

concluded that the authors chose to use a rectangle with an area is 3.6 km2 , instead of the 10.3 

km2  as given on page 363 of  the published article.   While it not in the intent  to determine 

methodology based on presented results, the incomplete description of procedures made this 

approach necessary.   If this result is correct, then the authors have been been deceptive in the 

method, and parameters used (size and geometry of study site).    

 

  Figure 5: Comparison between simulation and field study results.  
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RESULTS 

 
Results are shown in Figure 5A- D of the article.  The data used are from the “distance 

necessary to circumscribe” method where the time periods are not real time observations, but 

calculated or synthetic time periods based on lesion ages.  The method is discussed in 

Appendix B.     

Each successive time period adds to the infected tree population, so  changes to the empirical 

distribution should diminish with time.  Therefore, range of spatial dependency in Figures 5A 

(RSD) and 5B (RSDeff) are similar.  

The results are not reviewed in detail  because the statistical method employed is  improper.  

Any evaluation of aggregation of citrus canker infected trees, must first show the aggregation is 

not due to the general population of citrus in the site being non-randomly distributed. It would be 

intuitively obvious that the trees should be aggregated because of the  extensive non-citrus 

areas in the sites and the normal practice of planting citrus in back yards,  close to adjoining 

back yards.  

Further, a detailed review of  the distances from spatial dependences, are not reviewed, 

because they are not related to any “distances of spread” nor is there any mention of these 

distances should be considered as guide for increased eradication radius.    
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4. OTHER PRESENTATIONS 

 

VORONOI   TESSELLATIONS 
 

Figure 6: Voronoi Tesssellations from Gottwald’s presentation (Viewgraphs submitted into 

evidence, November 2000) 

 
This viewgraph was presented in the Broward County court house and it is believed to be the 

same as presented at the International Citrus Canker Research Workshop in June 2000, 

because the footnote at the bottom states  2000 Citrus Canker Workshop  June 2000.ppt. 

To start to analyze this data at the suggestion of Dr. Gareth Hughes, a friend of mine 

and colleague, we decided to try to look at the distribution from known focal trees to 

surrounding trees. To do that, we attempted to use what is known as Voronoi 

tessellation. This allowed us to carve up this data set such that if we used a focal tree 

and examined that, we knew anything that fell within this area (indicating) given to us by 

the tessellation was closer to this focal tree than any other focal tree in the area. 

That worked very well for a few number of focal trees, but as the number of focal 

trees increased, that particular analytical technique no longer worked for us. This would 

be what it would look like if you overlaid it on top of, in this case, Site 1. We weren't 
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able to then use this analysis, so we had to switch away from the Voronoi tessellation 

technique and developed our own program for estimating distances, and I'll talk about 

that, through a series of Visual Basic routines which analytically do the same thing as that 

technique which is a spatial analysis to try to determine how far citrus canker will spread 

from individual points of infection. 

Voronoi tessellations is a means of subdividing a given area into subareas based on 

boundaries drawn equidistant from each point in the area.  

An example is shown below.   In mining, Voronoi polygons are used to estimate the reserves 

of valuable materials, minerals, or other resources. Exploratory drillholes are used as the set of 

points in the Voronoi polygons.  

 

 Figure 7:  Example of Voronoi Tessellations 

 

 

 

It is theorized that Voronoi tessellations were used perhaps early in the planning process  to 

help define eradication radius.  The area of each bounded polygon can be calculated using 

commercial software programs.   The areas could then be ranked in order, lowest to highest,  

and using percentiles, a large area equal to the 95% quantile could be identified.   Then a radius 

equal to this large area would be calculated, to assure clear-cutting of 95% of all citrus trees in 

an area.  

Alternatively, the distance between infected trees and the furthest corner of the polygon could 

be calculated.  A similar analysis of these distances, using percentiles, could be used to identify 

a radius to clear-cut a high percentage of all citrus trees. This is illustrated in Figure 8.  
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Figure 8: Use of furthest corner to define eradication radius 

 

 

  

This conclusion  is  speculative. but it appears to be the most obvious reason to use this 

method.  

CONCLUSIONS 
 

1. All results are based on the highly subjective and an unscientific means of parsing the trees 

into time periods using oldest lesion ages.  There are no observed data, but inspectors 

discovered trees many months after infection dates as described in Appendix A.  

2. While the authors claim their method is  a new extension of Ripley-K analysis, it is actually an 

application of inter-point distance analysis. This form of analysis has been in the literature for 

approximately  40 years.  

3.  Hypothesis testing to determine whether the distribution of infected trees is significantly 

different from the total population of trees was proposed in the article but never done.  There is 

no explanation of why hypothesis testing was not done.  

4. The published article compares  an observed distribution with an “expected” distribution. The 

means by which  the expected distribution was calculated is not given in the article.  It is 

suggested that the Monte-Carlo simulation of  inter-point distances was used to generate this 

distribution.  

5. Any presentation of the CSR point pattern overlain on a street map, would show points (trees) 

in lakes, canals, on roofs of house, in parks and other “non-citrus” areas. Thus, the departures 

from spatial randomness are invalid, because the CSR pattern used to generate the the 

expected distribution would contain impossible point locations. The definitions and criteria for 

CSR patterns requires  there must be equal probability of an event (a tree being present) at 

every location.  
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6. Monte-Carlo methods were used  to replicate the “expected curve” in Figure 4 . A match was 

only possible with dimensions of 3.0 x 1.2 km, inconsistent with the given area of site D1 of 4.0 

square  miles (10.36 km2).  Thus, it would appear that a subset of the collected data in  Site D1 

was used in calculation of measures of spatial dependencies.  

7, The Voronoi tessellations analysis is another form of spatial point pattern analysis.  It was 

presented in  Broward Court in November 2000.  It is also believed to have been presented in 

the June 2000 at the International Citrus Canker Research Workshop.  The analysis may have 

been part of early efforts  to define a eradication radius.  This is reviewed in  Chapter 7.    
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